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We consider a process in which there are two types of partiéles)d B, on an infinite one-dimensional
lattice. The particles hop to their adjacent sites, like the totally asymmetric exclusion pfA&&R, and have
also the following interactionsA+B—B+B andB+A— B+ B, which all occur with equal rate. We study
this process by imposing four boundary conditions on the ASEP master equation. It is shown that this model
is integrable, in the sense that Msparticle S matrix is factorized into a product of two-partickmatrices and,
more importantly, the two-particl® matrix satisfies the quantum Yang-Baxter equation. Using the coordinate
Bethe-ansatz, thbl-particle wave functions and the two-particle conditional probabilities are found exactly.
Further, by imposing four reasonable physical conditions on two-species diffusion-reaction prdodsses
the most important ones are the equality of the reaction rates and the conservation of the number of particles
in each reaction we show that among the 4096 types of interactions which have these properties and can be
modeled by a master equation and an appropriate set of boundary conditions, there are only 28 independent
interactions which are integrable. We find all these interactions and also their corresponding wave functions.
Some of these may be new solutions of the quantum Yang-Baxter equation.

PACS numbegs): 82.20.Mj, 02.50.Ga, 05.46.a

I. INTRODUCTION exactly by this methodl15]. In this model, even if the right-
neighboring site of a particle is occupied, the particle hops to
For nonequilibrium systems in low dimensions, an underthe next right site by pushing all the neighboring particles to
standing can often be gained by studying rather simple modheir next right sites, with a rate which depends on the num-
els[1-4]. One of the important examples of these systems i®er of right-neighboring particles. This model has been fur-
reaction-diffusion processes on a one-dimensional lattice, thiher generalized ifil 6] by considering both the right and left
dynamics of which are fully specified by their master equa-hopping of the particles.
tion [5,6]. In some cases, it is possible to solve the master In this paper we are going to consider a class of integrable
equation exactly. In recent years, there has been enormousodels in which there arevo species of particles which can
progress in the field of exactly solvable nonequilibrium pro-hop to their right-neighboring sites if those are not occupied,
cesses. These developments were mainly triggered by thend can also interact with each other if they are in adjacent
observation that the Liouville operator of certain sites. The details of this nearest-neighboring interaction de-
(1+1)-dimensional reaction-diffusion models may be re-pend on the specific considered mo¢se[17—-19 for some
lated to Hamiltonians of previously known quantum spinrecent works on two- and three-species reaction-diffusion
systemg7,8]. processes The important point in integrable reaction-
One of the simplest examples of reaction-diffusion pro-diffusion processes with more than one type of particle is
cesses is the asymmetric simple exclusion procegseEP  that, as we will show, the two-particl® matrix of the reac-
[2,9,10, which has been used to describe various problemsion, which specifies th&-point functions, must satisfy the
in different fields of interest, such as the kinetics of bipoly-quantum Yang-Baxter equaticf@YBE). Therefore, as we
merization[11], dynamical models of interface growfh2], expect, the number of integrable models, in the sense that
and traffic modelg13]. The totally ASEP model has been their N-particle S matrix can be factorized into a product of
solved exactly by imposing the appropriate boundary conditwo-particle S matrices, is very few. In this paper we will
tion on the probabilities that appear in the master equatiofind all two-species integrable reaction-diffusion processes
[14]. The totally ASEP model describes a process in whichwhich have the following propertiesi) the particles hop to
each lattice site can be occupied by at most one particle antheir right-neighboring sites if these sites are not occupied;
the particle hops with rate one to its right-neighboring site if(ii) the interaction occurs only between nearest-neighbor par-
it is not already occupied, otherwise the attempted move isicles; (iii) the particles can be annihilated or created, with
rejected. the only restriction being that the total number of particles is
There are some other interesting and more complicatetixed; and(iv) all the interactions, including diffusions, occur
processes which can be solved by the method developed inith the same rate. We show that among th&=24096 types
[14], namely by choosing a suitable boundary condition forof interactions which have the above-mentioned properties
the master equation. For example, it has been shown that tlemd can be modeled by a master equation and an appropriate
so-called “generalized totally ASEP model” can be solvedboundary condition, there are only 42 interactions which are
integrable(their two-particleS matrices satisfy the QYBE
and from these, only 28 of them are independent. Some of
*Email address: alimohmd@theory.ipm.ac.ir these may be new solutions of QYBE.
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The plan of the paper is as follows. In Sec. Il, we intro- region and therefore E§2) has to be supplemented by some
duce the first kind of interaction, which was our initial mo- boundary conditions. The particular choice of the boundary
tivation in this work, in which besides the usual hopping, thecondition depends on the details of the interactions of par-
two types of particles interact as follow&d+B—B+B and ticles. For example, it can be shown that in the totally ASEP
B+ A— B+ B. We show that this interaction can be modeledmodel, the suitable boundary condition[ 4]
by the usual master equation of ASEP and four boundary
conditions. We also show that the model is integrable. Note P(x,X)=P(x,x+1), VX, 3
that one can look at this modgsee Eq.(1)] as a simple
one-dimensional model of the spread of disease. If we conin which the time variable and also all the other coordinates
sider theA particles to be the healthy individuals and e have been suppressed for simplicity. The master equéjon
particles the diseased ones, then we expect that wheA theand the boundary conditioi3) replace the very large number
and B particles are near each other, the healthy one mayf equations which one should write by considering the mul-
become disease@h other words B transmits disease #).  titude of cases which arises in different possible configura-
In Sec. lll, we compute the exact two-particle conditionaltions.
probabilities of this interaction and study the long-time be- To model the interactioril), we claim that the suitable
havior of these probabilities. And finally in Sec. IV, we in- poundary conditions are
vestigate the class of integrable models which have the four
above-mentioned properties, and we deduce that there are 28
different models, of which the totally ASEP model and our
first model introduced in Sec. Il are two of them.

PAA(X!X):PAA(X1X+1)1 (4)

Pgg(X,X) =Pgp(X,X+ 1)+ Pag(X,x+ 1) + Pga(X,x+1),
ll. AB—>BB AND BA—BB REACTION- (5
DIFFUSION PROCESS

A. The master equation Pag(X,X) = Pga(X,X) =0, (6)

Suppose there amg particles of two typeg\ andB on an  where we have again suppressed the positions of all the other

infinite one-dimensional lattice, with interactions particles. By looking at Eq(1), it is obvious that if we have
only A particles, the process is exactly the same as totally
A0—0A, ASEP. This is the explanation for E@t), which is the same
as Eq.(3). To justify the other three boundary conditions, we
BO— 0B provide a few examples in the two- and three-particle sec-
' tors, instead of giving a general proof.
@) First we consider the two-particle sector, for example
AB—BB, Pga(X,x+1). From master equatiof2) we have
BA—BB,

J
- PBA(X’X+ 1) = PBA(X_ 1,X) + PBA(X!X) - ZPBA(X,X+ 1)
all occurring withequalrate, which can be scaled to 1. In Eq. at

(1), we denote the vacancy by notation 0. The basic quanti- @

ties we are interested in are the probabilities,,_:

Py, .. ap(X1:X2, - .. Xy;3t) for finding at timet a par- Using Eq.(6), Eq. (7) reduces to

ticle of typea; at sitex,, a particle of typex, at sitex,, etc. 3

Eacha; can beA or B. Following [14], we take these func- — Pga(X,X+1)=Pga(X—1X) — 2Pga(X,Xx+1).  (8)
&t L ¥ 1 .

tions to define probabilities only in the physical regirn

<X,<---<Xp. The surfaces where any of the two adjacent

coordinates are equal are the boundaries of the physical rd 1S IS exactly what we expect, as the source of configura-

gion. In the subset of the physical region whese ;—x; tion (OBAO) is (BOAO) and its sinks are two configurations

>1, Vi, we have only hopping of the particles and therefore(0BOA) and (BBO). The second example Bgg(x,x+1).

the master equation can be written as Using again the master equati¢?) and the boundary con-
dition (5), we obtain

J
_Paa ...a(X1X1""X ’t) J
gt ez an T2 N =1 Pee(X.X+1)=Pga(X—1X)+ Pag(x,x+1)
=Pu . a(Xa— 11X, . XN
1o oag ML A2 N +Pga(X,x+1)— Pgg(x,x+1). (9
+~-~+Pa1 ..... DtN(XlaX21 ---!XN_l;t) . H i [
This equation also predicts the true source and sink terms,
=NP, o (X1, - Xy, (2)  because (BBO) has three sources80B0),(0AB0), and

(OBAO) and only one sink (BOB). As a three-patrticle sec-
As is clear from Eq(2), whenx;, ;=x;+ 1 for somei’s, one  tor example, let us consider the most nontrivial case
or more of the probability functions go out from the physical Pggg(X,x+ 1x+2). Using Eqs(3) and(5), we find
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Jd
ﬁ PBBB(X7X+ 1,X+ 2) = PBBB(X_ 1,X+ 1,X+ 2)

+ Pgpe(X,X, X+ 2) + Pggp(X,X+ 1 X+ 1) — 3Pggr(X, X+ 1X+2)
= PBBB(X_ 1,X+ 1,X+ 2) + 2PBAB(X!X+ 1,X+ 2) + PBBA(XIX+ 1,X+ 2)
+PABB(X1X+ 11X+2)_PBBB(XIX+17X+2)' (10)

This is also the true equation, because the configurationBB@0) has five sources, namely
(BOBBO), 2(0BABO0), (0BBAD), and ((ABB0) and one sink (BBOB). The reason for the factor 2 in BIABO) is that
(OBA---) cangoto (BB---) and also (- -ABO) can go to (- -BBO0).

B. The Bethe ansatz solution
We now try to solve the master equatit®) with boundary condition$4)—(6) by the Bethe ansatz method. If we define
v aN(xl, ... Xyn) through

aq, ey

Pal ..... aN(le e vXN ;t):eieNt\I}al ..... aN(le e !XN) (11)

and substitute Eq.11) in the master equatio(®) and boundary condition&)—(6), we find

q}al ..... aN(Xl_11X21 e 1XN)+ e +\I,a1 ..... aN(XlIX21 e 1XN_1):(N_6N)\P¢11 ..... aN(XlIX21 e 1XN) (12)
|
and wherex andp denote theN-tuple coordinates and momenta,
respectively, the summation runs over all the elements of the
Wan(X,X) =W an(X,X+1), permutation group, and tha,’s (tensors of rankN) are

coefficients that must be determined from boundary condi-
Wgg(X,X)=Wgg(X,X+ 1) +Wap(X,x+ 1)+ Wga(X,x+1), tion (14). Inserting Eq.(17) into (12) yields

(13
W (X, X)=Pga(X,X)=0. > AP XgTiol) 4 eiolPN) 4 g —N)=0,
Following [20], it becomes easier if we use a compact nota- (18

tion as follows: W is a tensor of rankN with components
Vo, .. a(X1, ... Xy). Then the boundary conditiorid3)

can be written as

W( .. L .. )=bg (.. EE4L .., (14

whereby . ; is the embedding db [the matrix derived from  To find the coefficient#\,, we insert the wave functiofi7)

from which one can find the eigenvalueg as

N
eN=k21 (1—e Pk, (19)

Eqg. (13)] in the locationk andk+ 1: in EqQ. (14), which yields
bipp1=1@---@ b, ®---01, (19 D eij%ﬂa(p,—)xj+i[a(pk>+a(pk+l)]§
R X[(1—€ 7Py, 1)A,]=0. (20)
with We note that the first part of the above equation is symmetric

with respect to the interchange ¢f and p,,q, so if we
symmetrize the bracket with respect to this interchange, we
obtain
(16) _ _
(l_ela—(pk+l)bk,k+l)A0+(1_elo—(pk)bk,kJrl)Ao'akzov
(21

o O O -
~ O O O
O O O
~ O O O

To solve Eq.(12), we write the coordinate Bethe ansatz for where oy is an element of permutation group which only
¥ in the form interchangep, andp,. 1, ando gy stands for the product of
two group elements ando. Thus we obtain

WXy, )= 2 AT 17 A, =Sk 1(0 (.0 (Ps 1))A, (22



PRE 62 CLASS OF INTEGRABLE DIFFUSION-REACTION . .. 1677

where [S(w,t)®1][1eS(z,t)][S(z,w)® 1]
Sepri(c1,2) =10 --® S(z1,2) @---01, (23 =[18S(zw)][S(zh@1][1eSw,b)]. (3D
N e’
kk+1 Now it is not too difficult to show that the matr80) really
and satisfiesEq. (31), and therefore the solutions of interactions
(1) are wave functiong17) with the coefficients that can be
S(z4,2,)=—(1—2z;b) "Y(1—2z,b). (24)  found by Eq.(22).

In the above equations, we have denot¥t by z,. In this
way, we can calculate all the coefficietg’s in term of A; lll. TWO-PARTICLE CONDITIONAL PROBABILITIES

by using Eq(22), andit seems thathe problem is solved for | thjs section we want to calculate the two-particle con-
the arbitrary boundary conditiam matrix. But this is not the  jitional probabilities P(ay,az,X1,X2:t| B1,82,Y1,Y2:0),
case and we should moreover check the consistency of thghich is the probability of findingx, at sitex, and particle
so_Iutlons, WhICh is h|gr_1ly nontrivial and depends on the de-a2 at sitex, at timet, if at imet=0 we have the particlg,
tails of the interaction, i.e., the eIement; c_)f thenatrix [20]. 44 sitey, and particled, at sitey,. As has been discussed in
To see this, let us find two coefficien®, ., and  [14] and[15], we should take a linear combination of eigen-
As,o,0,- NOte thatoio,0, and o040, are equal as the functionsP(x;,X,) [from Egs.(11) and (17)] with suitable
elements of the permutation group, that is, both of thenroefficients to find these two-particle conditional probabili-

when acting on §1,p2,P3,P4, . - . ) Will result in ties. Therefore,
(p1|p21p31p4,---)_’(p3yp21p1;p4;---)- (25) P
AA
So we should have Pag
P (x;t[B.,y;0)
19291 29192
PBB

Now using Eq.(22), we have

= | f(p1,p2)e” 2W(xy,x,)dpidp,
Ag o0y~ S100102(P1),0102(P2))A, 5, f

=S51AP2:P3)As 0, ) 2
=S1AP2,P3) S23(01(P2),01(P3))A 4, - (ZW)ZJ e e P c el(Pratpze)
=S12(P2:P3)Sp3(P1,P3) A, d
= S12(P2,P3)S23(P1,P3) S1AP1,P2)AL,  (27) a
and in the same way, +S12(P1,P2) 2 e'(P2a*Px2) b dp,dp,.
Asyoi0,= S23(P1:P2)S12(P1.P3) Spa( P2, P3) AL, (28) d
Therefore, Eq(26) yields (32)
S12(P2,P3) S23(P1,P3) S12(P1,P2) In the above expansion, P, . (Xt[B,y;0) s

- P(ay,@z,X1,%2;tB1,B2,Y1,Y2:0), f(p1,p2) is the coeffi-

S2a(P1,P2)S1AP1,P3) el P2,Pa),  (29) cient of expansion which in the second equality we choose

expar - 1€ o

which is the familiar quantum Yang-Baxter equation. Therel/(2m)°]e™""7, ‘and e;=2—e""P1—e"'P2 [see Eq.(19)].
fore, we must check if th& matrices defined in Eq€23) W(xq,X,) is the two-p'artlcle wave function where from Egs.
and (24), with b from Eq. (16), satisfy Eq.(29) or not. (17) and(22) we obtain

Using Eq.(16), it can be shown that Eq24) is equal to
W(Xq,X,)=A,e/(P1X1tP2X2) L A gloa(p)-x
1-w 0 0 0 (X1,X2) =Aq oy

1—7 0 0 :Alei(plxl+p2x2)+ SlZ( pl;pZ)Alei(plX2+p2X1)-

S(z,w)= (30) (33

z—1| 0 0 1-z 0 |
0 z—w z—w 1-w
_ _ _ In the two-particle sector; is a four-column vector whose
and if we definez=¢€'P1, w=¢'P2, andt=¢€'P3, Eq.(29) can  components must be determined by initial conditions, and
be written as S15(p1,p2) can be read from Eq30):
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s" 0 0 0
0O -1 O 0
S12(P1,P2) = 0o 0 -1 0 (34
0 s s s
with
. 1-gP2
Tehio1
(35
oiP1_ giPa
g1

Let us first calculate Eq(32) irrespective of the initial
conditions, that is, for arbitrary,b,c,d. Substituting Eq.
(34) in Eq. (32), we find

Paa a[F(t)+F4(t)]
Pas (x:t|B.y:0) b[F,(t)—F5(t)]
Paa| Y C[F1(t)—F(1)] '
Pgs d[F1(t) +F4(t)]+(b+c)F5(t)
(36)
in which
1 _
== | eetgip-(x-y)
Fa(t) (277)2f e 2™ Ydp,dp,, 37)
_ 1 —etai(p-x—p-y)
Fz(t)—(zT)zf e “Ze dp,dp,, (38

1 teipl_eipz _(N )
Fa(t)= fe*EZ ——'(PX7PYdp,dp,, (39
3(t) (2m)? aPi_1 pidp,, (39
1 1-eP2 e )
Fa(t)= fe*Z ———e'(PX7PYdp,dp,, 40
4(t) (2m)? NPT p.dp2 (40

where in the above equations we have suppressedahdp
dependence d;’s for simplicity andp=(p,,p,). To avoid

the singularity ins ands’, we setp;—p;+ie, and then by
some simple contour integration we find
F.(0)= 5x1,y15x2y21
(41
F2(0)=F3(0)=F4(0)=0,
and att#0,
X1 Y1

(X1—yD)! (Xa—y2)!’

tX2=Y2

Fi(t)=e 2

tX2™ Y1

(Xa=yD)! (X, =y2)!’

tXa7y2

Fao(t)=e 2

M. ALIMOHAMMADI AND N. AHMADI
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tray2tl *© tXe—y1tk
Fa(t)=e 2
(X1 =Yo+ 1! =0 (Xoa—y1+k)!
tX1—Y2 § txz—yl+k+1
D I="C e S
2t[ tx17y2+1
Fiat)y=e  —————
A0 Gy 1y
(42)
tXi—Y2 i tX2—y1tk
 (a—Y2HED (oY1 TR

Now we can study the different initial conditions.

A. Case of B1=8,=A

If at t=0 both particles aré\ type, then our initial con-
dition is

Paa RN
z:i (X;0[A,Ay;0)= 2 (43)
Pes 0
Using Eqgs.(36) and (41), we find
a=1, b=c=d=0, (44)
and therefore
Paa(Xt[AA,Y;0) =F (1) + F4(t), (45

and all otherP’s are zero. Note that Eq45) is exactly the
same conditional probability that has been foundllid] for
the simple ASEP model, as we expected.

B. Case of8,=A,B,=B

In this case the only nonzero element of conditional prob-

ability, att=0, is Pag= 8y, y, 5, .y,

b=1, a=c=d=0,

Therefore, one finds
(46)
and therefore
Pas(X;t|A,B,y;0)=F(t)—Fy(t),
(47)
PBB(X1t|AIB=y10):F3(t)1

and Pp,=Pga=0, which is consistent with our processes

(2). It can also be checked that the conservation of probabil-

ity holds,

o Xo—1

> 2 (PastPee)(Xt|ABy;00=1,

X2=Y2 X1=Y1

(48)

for arbitraryy,, y,, andt.

C. Case of8,=B,B,=A
In this case, the final result is
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Pea(X:t|B,A,y;0)=F4(t)—F(t), IV. CLASS OF MODELS

(49 Now we want to find the class of integrable models which
Pes(X;t|B,A,y;0)=F3(1), have the four properties introduced in the Introduction. If we
look at the preceding sections, we notice that all the infor-
andPaa=Pag=0. mation about the model is abbreviated in thenatrix (16),
because this matrix comes from the boundary conditions
D. Case of8,=8,=B (4)—(6), and the latter induce our interactions. We also note
. . . that the sum of each column bfmatrix is 1. Now we claim
In this case the final result is the same as the case Seﬁi . ; o :
at eachb matrix, which has the properties in whi¢h the
[IIA as we expected, . .
nondiagonal elements are 1 or zero dngthe sum of ele-
Pga(X;t|B,B,y;0)=F1(t) + F4(t), (50) ments in each column is 1, represents a model in which its
interactiorgs) can be induced by the master equati@gnand
andPaa=Pag=Pga=0. the boundary conditids) which can be read frorh. '
Another interesting quantity that can be calculated is the The reason for the first requirement is that the nondiago-
long-time behavior of these functions. The only nontrivial nal elements are the sources of our reactions, as can be seen
case is the Sec. Il Bor equivalently Sec. Il ¢ We expect from Fhe example solyed in Sec. I A, and if we want all the
that if att=0 we haveA and B particles(one healthy and reactions to occur with equal rate 1, the prefactors of all

one diseased individualthe healthy one becomes diseasedSOUrce terms must be orier zero if we do not want the
finally, or we have twd particles finally. In other words, we Correésponding source terin$lote that we should take all the
expect thatin Sec. Il B) rates equal to each other, otherwise for the reactions we are

interested ir(i.e., those in which particles change their type

o xp—1 the factorization(11) will not yield the time-independent
> > Pag(xit—x|A,B,y;0)—0, (51)  boundary conditiofs), which is wrong.
X2=Y2 X1=Y1 The reason for the second requirement lies in the conser-
vation of probability. Suppose that in the first columniof
and for example, the sum of the nondiagonal elementsiand

the diagonal element in. So we havem possible interac-
tions, each of which can be a sink f&A. Therefore, if our
Xg Xz Pea(X;t—x|A,B,y;0)—1. (52 configuration is (& A0), we must haven+ 1 sinks, one sink
272 for diffusion (OAA0)— (0OAO0A), and m sinks for reactions
(OAA0)—(0aB0). Now we consider the master equation
for this process:

o xp—1

After some calculations, one can show that

© 0 X-1
J
> 2 Pap(xt|AB,y;0) P pAX X+ 1) = PAa(X— 1+ 1)+ Paa(X,X)
X2=Y2 X1=VY1 at
y2—y1—1
—2Ppa(X,x+1
e 22 X I 20+16(2)+1y . (20)], Al )
m=1 21 m’
(53) =Paa(X—1x+ 1)+§ Pap(X,x+1)
wherel ,(x) is thenth order Bessel function of the first kind: —(2=N)PAa(X, X+ 1), (57)
= (x[2)nt 2k in which we have supposed that the elements of the first
|n(X):kZO K(nFkT (54 row of b (besides b)) are different from zero and therefore
T ' the corresponding probabilities appeaMpa(x,x). Now as
Now atx—soo. we have the number of sinks must bm+1, so also must 2n=m
' +1, which yieldsn+m=1. Therefore, the sum of the ele-
. ments of the first column db must be 1. By the same rea-
| (X)— (55) soning, this is true for other columns.
n J2x In this way we have ¥=4096 possibilities for matrices
(there are 12 nondiagonal elements, where each can be 1 or
therefore zerg, where each plus master equati@@ can model a

reaction-diffusion process. But as we have seen in reaction

o xp—1 M (2), theseb’s must be consistent with the QYBB1). There-

> > Pag(X;t—»|AB,y;0)0»—, (56 fore, the domain ob’s is much smaller. So it is sufficient to

X2=Y2 X1=Y1 Vamt check which of thes®’s [or more carefully, theS matrices

that are constructed by thebks from Eq.(24)] satisfies Eq.

which goes to zeroM is the number of thé,(2t)’s in the  (31). Using a symbolic manipulatde.g.,MAPLE), we found

left-hand side of Eq(53). Using Eq.(48), we see that both that there are 42 differertt’s that satisfy Eq.(31). By a
limits in Egs.(51) and(52) are satisfied. closer inspection of these matrices, it can be observed that 14
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of them can be obtained from the others by interchanging
A< B, so they do not represent any new physical interac-
tions. The 42-14=28b’s (interaction$ are as follows:

b4:

= O O O

O »r O O

= O O O

o O O -

= O O O o » O O
o O O -

o » O O

o O - O

O O O - o O O -

O O O B

o O - O

o » O O o » O O
o » O O O O O

o O - O

o B, O O

o O -, O

= O O O

200 09 2O O9 © » O O
© B O O = O O O o r O O B O O o o r O O

O O O
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ol pure diffusion,
1
0
0
ol AB—BA,
1
0
0
BA
O ) _>BBI
1
0
0 AB—BB
0|’ eR
1
0
0 AB
o/ Ba BB
1
AB—BA, AA—BB,
AA—BA, AB—BB,
0
0 AA
BA
o|" aB| "™
1

BA—AB, AA—BB,

bio=

o O -, O
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-1 1 o0
i -1 1 0 BB
26~ 1 1| as|”AA
1 1 -1
BB AA AA
ag[ ~BA ga[ AR ga| BB
-1 1
X 1 -1 o0 BA
7711 0 -1 ©ag[ TAA
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-2 1
AB
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2711 1 -2 1| —AA,
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AB BA AB

It should be mentioned that in the above, the reaction pro-
cesses of eacbh have been given only and the diffusion
processegwhich exist in all caseshave been suppressed.
Also note thab, is the pure diffusion process (4], andbs

is merely Eq.(16).

In all the above cases, the probabilitids and A, are
given by Eqgs.(11), (17), and(22), respectively. Obviously,
S(z,w) must be calculated from E@24) for each case, and
then the calculations of Sec. Il can be repeated for them.
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