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Class of integrable diffusion-reaction processes
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We consider a process in which there are two types of particles,A and B, on an infinite one-dimensional
lattice. The particles hop to their adjacent sites, like the totally asymmetric exclusion process~ASEP!, and have
also the following interactions:A1B→B1B andB1A→B1B, which all occur with equal rate. We study
this process by imposing four boundary conditions on the ASEP master equation. It is shown that this model
is integrable, in the sense that itsN-particleSmatrix is factorized into a product of two-particleSmatrices and,
more importantly, the two-particleSmatrix satisfies the quantum Yang-Baxter equation. Using the coordinate
Bethe-ansatz, theN-particle wave functions and the two-particle conditional probabilities are found exactly.
Further, by imposing four reasonable physical conditions on two-species diffusion-reaction processes~where
the most important ones are the equality of the reaction rates and the conservation of the number of particles
in each reaction!, we show that among the 4096 types of interactions which have these properties and can be
modeled by a master equation and an appropriate set of boundary conditions, there are only 28 independent
interactions which are integrable. We find all these interactions and also their corresponding wave functions.
Some of these may be new solutions of the quantum Yang-Baxter equation.

PACS number~s!: 82.20.Mj, 02.50.Ga, 05.40.2a
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I. INTRODUCTION

For nonequilibrium systems in low dimensions, an und
standing can often be gained by studying rather simple m
els @1–4#. One of the important examples of these system
reaction-diffusion processes on a one-dimensional lattice
dynamics of which are fully specified by their master equ
tion @5,6#. In some cases, it is possible to solve the mas
equation exactly. In recent years, there has been enorm
progress in the field of exactly solvable nonequilibrium p
cesses. These developments were mainly triggered by
observation that the Liouville operator of certa
(111)-dimensional reaction-diffusion models may be
lated to Hamiltonians of previously known quantum sp
systems@7,8#.

One of the simplest examples of reaction-diffusion p
cesses is the asymmetric simple exclusion processes~ASEP!
@2,9,10#, which has been used to describe various proble
in different fields of interest, such as the kinetics of bipo
merization@11#, dynamical models of interface growth@12#,
and traffic models@13#. The totally ASEP model has bee
solved exactly by imposing the appropriate boundary con
tion on the probabilities that appear in the master equa
@14#. The totally ASEP model describes a process in wh
each lattice site can be occupied by at most one particle
the particle hops with rate one to its right-neighboring site
it is not already occupied, otherwise the attempted mov
rejected.

There are some other interesting and more complica
processes which can be solved by the method develope
@14#, namely by choosing a suitable boundary condition
the master equation. For example, it has been shown tha
so-called ‘‘generalized totally ASEP model’’ can be solv

*Email address: alimohmd@theory.ipm.ac.ir
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exactly by this method@15#. In this model, even if the right-
neighboring site of a particle is occupied, the particle hops
the next right site by pushing all the neighboring particles
their next right sites, with a rate which depends on the nu
ber of right-neighboring particles. This model has been f
ther generalized in@16# by considering both the right and le
hopping of the particles.

In this paper we are going to consider a class of integra
models in which there aretwo species of particles which ca
hop to their right-neighboring sites if those are not occupi
and can also interact with each other if they are in adjac
sites. The details of this nearest-neighboring interaction
pend on the specific considered model~see@17–19# for some
recent works on two- and three-species reaction-diffus
processes!. The important point in integrable reaction
diffusion processes with more than one type of particle
that, as we will show, the two-particleS matrix of the reac-
tion, which specifies theN-point functions, must satisfy the
quantum Yang-Baxter equation~QYBE!. Therefore, as we
expect, the number of integrable models, in the sense
their N-particleS matrix can be factorized into a product o
two-particle S matrices, is very few. In this paper we wi
find all two-species integrable reaction-diffusion proces
which have the following properties:~i! the particles hop to
their right-neighboring sites if these sites are not occupi
~ii ! the interaction occurs only between nearest-neighbor
ticles; ~iii ! the particles can be annihilated or created, w
the only restriction being that the total number of particles
fixed; and~iv! all the interactions, including diffusions, occu
with the same rate. We show that among the 21254096 types
of interactions which have the above-mentioned proper
and can be modeled by a master equation and an approp
boundary condition, there are only 42 interactions which
integrable~their two-particleS matrices satisfy the QYBE!,
and from these, only 28 of them are independent. Some
these may be new solutions of QYBE.
1674 ©2000 The American Physical Society
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The plan of the paper is as follows. In Sec. II, we intr
duce the first kind of interaction, which was our initial m
tivation in this work, in which besides the usual hopping, t
two types of particles interact as follows:A1B→B1B and
B1A→B1B. We show that this interaction can be model
by the usual master equation of ASEP and four bound
conditions. We also show that the model is integrable. N
that one can look at this model@see Eq.~1!# as a simple
one-dimensional model of the spread of disease. If we c
sider theA particles to be the healthy individuals and theB
particles the diseased ones, then we expect that when tA
and B particles are near each other, the healthy one m
become diseased~in other words,B transmits disease toA).
In Sec. III, we compute the exact two-particle condition
probabilities of this interaction and study the long-time b
havior of these probabilities. And finally in Sec. IV, we in
vestigate the class of integrable models which have the
above-mentioned properties, and we deduce that there a
different models, of which the totally ASEP model and o
first model introduced in Sec. II are two of them.

II. AB\BB AND BA\BB REACTION-
DIFFUSION PROCESS

A. The master equation

Suppose there areN particles of two typesA andB on an
infinite one-dimensional lattice, with interactions

A0→0A,

B0→0B,
~1!

AB→BB,

BA→BB,

all occurring withequalrate, which can be scaled to 1. In E
~1!, we denote the vacancy by notation 0. The basic qua
ties we are interested in are the probabiliti
Pa1 ,a2 , . . . ,aN

(x1 ,x2 , . . . ,xN ;t) for finding at timet a par-

ticle of typea1 at sitex1, a particle of typea2 at sitex2, etc.
Eacha i can beA or B. Following @14#, we take these func
tions to define probabilities only in the physical regionx1
,x2,•••,xN . The surfaces where any of the two adjace
coordinates are equal are the boundaries of the physica
gion. In the subset of the physical region wherexi 112xi
.1, ; i , we have only hopping of the particles and therefo
the master equation can be written as

]

]t
Pa1 ,a2 , . . . ,aN

~x1 ,x2 , . . . ,xN ;t !

5Pa1 , . . . ,aN
~x121,x2 , . . . ,xN ;t !

1•••1Pa1 , . . . ,aN
~x1 ,x2 , . . . ,xN21;t !

2NPa1 , . . . ,aN
~x1 , . . . ,xN ;t !. ~2!

As is clear from Eq.~2!, whenxi 115xi11 for somei ’s, one
or more of the probability functions go out from the physic
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region and therefore Eq.~2! has to be supplemented by som
boundary conditions. The particular choice of the bound
condition depends on the details of the interactions of p
ticles. For example, it can be shown that in the totally AS
model, the suitable boundary condition is@14#

P~x,x!5P~x,x11!, ;x, ~3!

in which the time variable and also all the other coordina
have been suppressed for simplicity. The master equation~2!
and the boundary condition~3! replace the very large numbe
of equations which one should write by considering the m
titude of cases which arises in different possible configu
tions.

To model the interaction~1!, we claim that the suitable
boundary conditions are

PAA~x,x!5PAA~x,x11!, ~4!

PBB~x,x!5PBB~x,x11!1PAB~x,x11!1PBA~x,x11!,
~5!

PAB~x,x!5PBA~x,x!50, ~6!

where we have again suppressed the positions of all the o
particles. By looking at Eq.~1!, it is obvious that if we have
only A particles, the process is exactly the same as tot
ASEP. This is the explanation for Eq.~4!, which is the same
as Eq.~3!. To justify the other three boundary conditions, w
provide a few examples in the two- and three-particle s
tors, instead of giving a general proof.

First we consider the two-particle sector, for examp
PBA(x,x11). From master equation~2! we have

]

]t
PBA~x,x11!5PBA~x21,x!1PBA~x,x!22PBA~x,x11!.

~7!

Using Eq.~6!, Eq. ~7! reduces to

]

]t
PBA~x,x11!5PBA~x21,x!22PBA~x,x11!. ~8!

This is exactly what we expect, as the source of configu
tion (0BA0) is (B0A0) and its sinks are two configuration
(0B0A) and (0BB0). The second example isPBB(x,x11).
Using again the master equation~2! and the boundary con
dition ~5!, we obtain

]

]t
PBB~x,x11!5PBB~x21,x!1PAB~x,x11!

1PBA~x,x11!2PBB~x,x11!. ~9!

This equation also predicts the true source and sink ter
because (0BB0) has three sources (B0B0),(0AB0), and
(0BA0) and only one sink (0B0B). As a three-particle sec
tor example, let us consider the most nontrivial ca
PBBB(x,x11,x12). Using Eqs.~3! and ~5!, we find
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]

]t
PBBB~x,x11,x12!5PBBB~x21,x11,x12!

1PBBB~x,x,x12!1PBBB~x,x11,x11!23PBBB~x,x11,x12!

5PBBB~x21,x11,x12!12PBAB~x,x11,x12!1PBBA~x,x11,x12!

1PABB~x,x11,x12!2PBBB~x,x11,x12!. ~10!

This is also the true equation, because the configuration (0BBB0) has five sources, namel
(B0BB0), 2(0BAB0), (0BBA0), and (0ABB0) and one sink (0BB0B). The reason for the factor 2 in (0BAB0) is that
(0BA•••) can go to (0BB•••) and also (•••AB0) can go to (•••BB0).

B. The Bethe ansatz solution

We now try to solve the master equation~2! with boundary conditions~4!–~6! by the Bethe ansatz method. If we defin
Ca1 , . . . ,aN

(x1 , . . . ,xN) through

Pa1 , . . . ,aN
~x1 , . . . ,xN ;t !5e2eNtCa1 , . . . ,aN

~x1 , . . . ,xN! ~11!

and substitute Eq.~11! in the master equation~2! and boundary conditions~4!–~6!, we find

Ca1 , . . . ,aN
~x121,x2 , . . . ,xN!1•••1Ca1 , . . . ,aN

~x1 ,x2 , . . . ,xN21!5~N2eN!Ca1 , . . . ,aN
~x1 ,x2 , . . . ,xN! ~12!
ta
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CAA~x,x!5CAA~x,x11!,

CBB~x,x!5CBB~x,x11!1CAB~x,x11!1CBA~x,x11!,

~13!

CAB~x,x!5CBA~x,x!50.

Following @20#, it becomes easier if we use a compact no
tion as follows:C is a tensor of rankN with components
Ca1 , . . . ,aN

(x1 , . . . ,xN). Then the boundary conditions~13!

can be written as

C~ . . . ,j,j, . . . !5bk,k11C~ . . . ,j,j11, . . . !, ~14!

wherebk,k11 is the embedding ofb @the matrix derived from
Eq. ~13!# in the locationk andk11:

~15!

with

b5S 1 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1

D . ~16!

To solve Eq.~12!, we write the coordinate Bethe ansatz f
C in the form

C~x1 , . . . ,xN!5(
s

Aseis(p)•x, ~17!
-

wherex andp denote theN-tuple coordinates and moment
respectively, the summation runs over all the elements of
permutation group, and theAs’s ~tensors of rankN) are
coefficients that must be determined from boundary con
tion ~14!. Inserting Eq.~17! into ~12! yields

(
s

Aseis(p)•x~e2 is(p1)1 . . . 1e2 is(pN)1eN2N!50,

~18!

from which one can find the eigenvalueseN as

eN5 (
k51

N

~12e2 ipk!. ~19!

To find the coefficientsAs , we insert the wave function~17!
in Eq. ~14!, which yields

(
s

ei (
j Þk,k11

s(pj )xj 1 i [s(pk)1s(pk11)] j

3@~12eis(pk11)bk,k11!As#50. ~20!

We note that the first part of the above equation is symme
with respect to the interchange ofpk and pk11, so if we
symmetrize the bracket with respect to this interchange,
obtain

~12eis(pk11)bk,k11!As1~12eis(pk)bk,k11!Assk
50,

~21!

where sk is an element of permutation group which on
interchangespk andpk11 , andssk stands for the product o
two group elementss andsk . Thus we obtain

Assk
5Sk,k11„s~pk!,s~pk11!…As , ~22!
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where

~23!

and

S~z1 ,z2!52~12z1b!21~12z2b!. ~24!

In the above equations, we have denotedeipk by zk . In this
way, we can calculate all the coefficientsAs’s in term ofA1
by using Eq.~22!, andit seems thatthe problem is solved for
the arbitrary boundary conditionb matrix. But this is not the
case and we should moreover check the consistency o
solutions, which is highly nontrivial and depends on the d
tails of the interaction, i.e., the elements of theb matrix @20#.

To see this, let us find two coefficientsAs1s2s1
and

As2s1s2
. Note thats1s2s1 and s2s1s2 are equal as the

elements of the permutation group, that is, both of th
when acting on (p1 ,p2 ,p3 ,p4 , . . . ) will result in

~p1 ,p2 ,p3 ,p4 , . . . !→~p3 ,p2 ,p1 ,p4 , . . . !. ~25!

So we should have

As1s2s1
5As2s1s2

. ~26!

Now using Eq.~22!, we have

As1s2s3
5S12„s1s2~p1!,s1s2~p2!…As1s2

5S12~p2 ,p3!As1s2

5S12~p2 ,p3!S23„s1~p2!,s1~p3!…As1

5S12~p2 ,p3!S23~p1 ,p3!As1

5S12~p2 ,p3!S23~p1 ,p3!S12~p1 ,p2!A1 , ~27!

and in the same way,

As2s1s2
5S23~p1 ,p2!S12~p1 ,p3!S23~p2 ,p3!A1 . ~28!

Therefore, Eq.~26! yields

S12~p2 ,p3!S23~p1 ,p3!S12~p1 ,p2!

5S23~p1 ,p2!S12~p1 ,p3!S23~p2 ,p3!, ~29!

which is the familiar quantum Yang-Baxter equation. The
fore, we must check if theS matrices defined in Eqs.~23!
and ~24!, with b from Eq. ~16!, satisfy Eq.~29! or not.

Using Eq.~16!, it can be shown that Eq.~24! is equal to

S~z,w!5
1

z21 F 12w 0 0 0

0 12z 0 0

0 0 12z 0

0 z2w z2w 12w

G , ~30!

and if we definez5eip1, w5eip2, andt5eip3, Eq. ~29! can
be written as
he
-

-

@S~w,t ! ^ 1#@1^ S~z,t !#@S~z,w! ^ 1#

5@1^ S~z,w!#@S~z,t ! ^ 1#@1^ S~w,t !#. ~31!

Now it is not too difficult to show that the matrix~30! really
satisfiesEq. ~31!, and therefore the solutions of interaction
~1! are wave functions~17! with the coefficients that can b
found by Eq.~22!.

III. TWO-PARTICLE CONDITIONAL PROBABILITIES

In this section we want to calculate the two-particle co
ditional probabilities P(a1 ,a2 ,x1 ,x2 ;tub1 ,b2 ,y1 ,y2 ;0),
which is the probability of findinga1 at sitex1 and particle
a2 at sitex2 at timet, if at time t50 we have the particleb1
at sitey1 and particleb2 at sitey2. As has been discussed i
@14# and@15# , we should take a linear combination of eige
functionsP(x1 ,x2) @from Eqs.~11! and ~17!# with suitable
coefficients to find these two-particle conditional probab
ties. Therefore,

S PAA

PAB

PBA

PBB

D ~x;tub,y;0!

5E f ~p1 ,p2!e2e2tC~x1 ,x2!dp1dp2

5
1

~2p!2E e2e2te2 ip•y5 S a

b

c

d

D ei (p1x11p2x2)

1S12~p1 ,p2!S a

b

c

d

D ei (p2x11p1x2)6 dp1dp2 .

~32!

In the above expansion, Pa1a2
(x;tub,y;0) is

P(a1 ,a2 ,x1 ,x2 ;tub1 ,b2 ,y1 ,y2 ;0), f (p1 ,p2) is the coeffi-
cient of expansion which in the second equality we cho
@1/(2p)2#e2 ip•y, and e2522e2 ip12e2 ip2 @see Eq.~19!#.
C(x1 ,x2) is the two-particle wave function where from Eq
~17! and ~22! we obtain

C~x1 ,x2!5A1ei (p1x11p2x2)1As1
eis1(p)•x

5A1ei (p1x11p2x2)1S12~p1 ,p2!A1ei (p1x21p2x1).

~33!

In the two-particle sector,A1 is a four-column vector whose
components must be determined by initial conditions, a
S12(p1 ,p2) can be read from Eq.~30!:
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S12~p1 ,p2!5S s8 0 0 0

0 21 0 0

0 0 21 0

0 s s s8

D , ~34!

with

s85
12eip2

eip121
,

~35!

s5
eip12eip2

eip121
.

Let us first calculate Eq.~32! irrespective of the initial
conditions, that is, for arbitrarya,b,c,d. Substituting Eq.
~34! in Eq. ~32!, we find

S PAA

PAB

PBA

PBB

D ~x;tub,y;0!5S a@F1~ t !1F4~ t !#

b@F1~ t !2F2~ t !#

c@F1~ t !2F2~ t !#

d@F1~ t !1F4~ t !#1~b1c!F3~ t !

D ,

~36!

in which

F1~ t !5
1

~2p!2E e2e2teip•(x2y)dp1dp2 , ~37!

F2~ t !5
1

~2p!2E e2e2tei (p̃•x2p•y)dp1dp2 , ~38!

F3~ t !5
1

~2p!2E e2e2t
eip12eip2

eip121
ei (p̃•x2p•y)dp1dp2 , ~39!

F4~ t !5
1

~2p!2E e2e2t
12eip2

eip121
ei (p̃•x2p•y)dp1dp2 , ~40!

where in the above equations we have suppressed thex andp
dependence ofFi ’s for simplicity andp̃5(p2 ,p1). To avoid
the singularity ins ands8, we setp1→p11 i«, and then by
some simple contour integration we find

F1~0!5dx1 ,y1
dx2y2

,

~41!
F2~0!5F3~0!5F4~0!50,

and attÞ0,

F1~ t !5e22t
tx12y1

~x12y1!!

tx22y2

~x22y2!!
,

F2~ t !5e22t
tx22y1

~x22y1!!

tx12y2

~x
1
2y2!!

,

F3~ t !5e22tH tx12y211

~x12y211!! (
k50

`
tx22y11k

~x22y11k!!

2
tx12y2

~x12y2!! (
k50

`
tx22y11k11

~x22y11k11!! J ,

F4~ t !5e22tH tx12y211

~x12y211!!
~42!

2
tx12y2

~x12y2!! (k50

`
tx22y11k

~x22y11k!!
.

Now we can study the different initial conditions.

A. Case ofb1Äb2ÄA

If at t50 both particles areA type, then our initial con-
dition is

S PAA

PAB

PBA

PBB

D ~x;0uA,A,y;0!5S dx1 ,y1
dx2 ,y2

0

0

0

D . ~43!

Using Eqs.~36! and ~41!, we find

a51, b5c5d50, ~44!

and therefore

PAA~x;tuA,A,y;0!5F1~ t !1F4~ t !, ~45!

and all otherP’s are zero. Note that Eq.~45! is exactly the
same conditional probability that has been found in@14# for
the simple ASEP model, as we expected.

B. Case ofb1ÄA,b2ÄB

In this case the only nonzero element of conditional pro
ability, at t50, is PAB5dx1 ,y1

dx2 ,y2
. Therefore, one finds

b51, a5c5d50, ~46!

and therefore

PAB~x;tuA,B,y;0!5F1~ t !2F2~ t !,
~47!

PBB~x;tuA,B,y;0!5F3~ t !,

and PAA5PBA50, which is consistent with our processe
~1!. It can also be checked that the conservation of proba
ity holds,

(
x25y2

`

(
x15y1

x221

~PAB1PBB!~x;tuA,B,y;0!51, ~48!

for arbitraryy1 , y2, andt.

C. Case ofb1ÄB,b2ÄA

In this case, the final result is
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PBA~x;tuB,A,y;0!5F1~ t !2F2~ t !,
~49!

PBB~x;tuB,A,y;0!5F3~ t !,

andPAA5PAB50.

D. Case ofb1Äb2ÄB

In this case the final result is the same as the case
III A as we expected,

PBB~x;tuB,B,y;0!5F1~ t !1F4~ t !, ~50!

andPAA5PAB5PBA50.
Another interesting quantity that can be calculated is

long-time behavior of these functions. The only nontriv
case is the Sec. III B~or equivalently Sec. III C!. We expect
that if at t50 we haveA and B particles~one healthy and
one diseased individual!, the healthy one becomes diseas
finally, or we have twoB particles finally. In other words, we
expect that~in Sec. III B!

(
x25y2

`

(
x15y1

x221

PAB~x;t→`uA,B,y;0!→0, ~51!

and

(
x25y2

`

(
x15y1

x221

PBB~x;t→`uA,B,y;0!→1. ~52!

After some calculations, one can show that

(
x25y2

`

(
x15y1

x221

PAB~x;tuA,B,y;0!

5e22tF2 (
m51

y22y121

I m~2t !1I 0~2t !1I y22y1
~2t !G ,

~53!

whereI n(x) is thenth order Bessel function of the first kind

I n~x!5 (
k50

`
~x/2!n12k

k! ~n1k!!
. ~54!

Now at x→`, we have

I n~x!→ ex

A2px
, ~55!

therefore

(
x25y2

`

(
x15y1

x221

PAB~x;t→`uA,B,y;0!→ M

A4pt
, ~56!

which goes to zero.M is the number of theI n(2t)’s in the
left-hand side of Eq.~53!. Using Eq.~48!, we see that both
limits in Eqs.~51! and ~52! are satisfied.
ec.

e
l

d

IV. CLASS OF MODELS

Now we want to find the class of integrable models whi
have the four properties introduced in the Introduction. If w
look at the preceding sections, we notice that all the inf
mation about the model is abbreviated in theb matrix ~16!,
because this matrix comes from the boundary conditi
~4!–~6!, and the latter induce our interactions. We also n
that the sum of each column ofb matrix is 1. Now we claim
that eachb matrix, which has the properties in which~i! the
nondiagonal elements are 1 or zero and~ii ! the sum of ele-
ments in each column is 1, represents a model in which
interaction~s! can be induced by the master equation~2! and
the boundary condition~s! which can be read fromb.

The reason for the first requirement is that the nondia
nal elements are the sources of our reactions, as can be
from the example solved in Sec. II A, and if we want all th
reactions to occur with equal rate 1, the prefactors of
source terms must be one~or zero if we do not want the
corresponding source terms!. Note that we should take all th
rates equal to each other, otherwise for the reactions we
interested in~i.e., those in which particles change their type!,
the factorization~11! will not yield the time-independen
boundary condition~s!, which is wrong.

The reason for the second requirement lies in the con
vation of probability. Suppose that in the first column ofb,
for example, the sum of the nondiagonal elements ism and
the diagonal element isn. So we havem possible interac-
tions, each of which can be a sink forAA. Therefore, if our
configuration is (0AA0), we must havem11 sinks, one sink
for diffusion (0AA0)→(0A0A), and m sinks for reactions
(0AA0)→(0ab0). Now we consider the master equatio
for this process:

]

]t
PAA~x,x11!5PAA~x21,x11!1PAA~x,x!

22PAA~x,x11!

5PAA~x21,x11!1(
1

m8

Pab~x,x11!

2~22n!PAA~x,x11!, ~57!

in which we have supposed that them8 elements of the first
row of b ~besides b11) are different from zero and therefor
the corresponding probabilities appear inPAA(x,x). Now as
the number of sinks must bem11, so also must 22n5m
11, which yieldsn1m51. Therefore, the sum of the ele
ments of the first column ofb must be 1. By the same rea
soning, this is true for other columns.

In this way we have 21254096 possibilities for matricesb
~there are 12 nondiagonal elements, where each can be
zero!, where each plus master equation~2! can model a
reaction-diffusion process. But as we have seen in reac
~2!, theseb’s must be consistent with the QYBE~31!. There-
fore, the domain ofb’s is much smaller. So it is sufficient to
check which of theseb’s @or more carefully, theS matrices
that are constructed by theseb’s from Eq. ~24!# satisfies Eq.
~31!. Using a symbolic manipulator~e.g.,MAPLE!, we found
that there are 42 differentb’s that satisfy Eq.~31!. By a
closer inspection of these matrices, it can be observed tha
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of them can be obtained from the others by interchang
A↔B, so they do not represent any new physical inter
tions. The 42214528 b’s ~interactions! are as follows:

b15S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D , pure diffusion,

b25S 1 0 0 0

0 0 0 0

0 1 1 0

0 0 0 1

D , AB→BA,

b35S 1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1

D , BA→BB,

b45S 1 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

D , AB→BB,

b55S 1 0 0 0

0 0 0 0

0 0 0 0

0 1 1 1

D ,
AB

BAJ →BB,

b65S 0 0 0 0

0 0 0 0

0 1 1 0

1 0 0 1

D , AB→BA, AA→BB,

b75S 0 0 0 0

0 0 0 0

1 0 1 0

0 1 0 1

D , AA→BA, AB→BB,

b85S 0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 1

D ,
AA

ABJ →BA,

b95S 0 0 0 0

0 1 1 0

0 0 0 0

1 0 0 1

D , BA→AB, AA→BB,
g
-

b105S 0 0 0 0

1 1 0 0

0 0 1 1

0 0 0 0

D , AA→AB, BB→BA,

b115S 1 0 1 0

0 0 0 0

0 0 0 0

0 1 0 1

D , BA→AA, AB→BB,

b125S 0 0 0 0

1 1 1 0

0 0 0 0

0 0 0 1

D ,
AA

BAJ →AB,

b135S 1 1 0 0

0 0 0 0

0 0 0 0

0 0 1 1

D , AB→AA, BA→BB,

b145S 0 0 0 0

1 1 0 0

0 0 0 0

0 0 1 1

D , AA→AB, BA→BB,

b155S 0 0 0 0

0 1 0 1

1 0 1 0

0 0 0 0

D , BB→AB, AA→BA,

b165S 1 0 0 0

0 21 0 0

0 1 1 1

0 1 0 0

D , AB→BB,
BB

ABJ →BA,

b175S 0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

D ,

AA

AB

BA
J →BB,

b185S 1 0 1 0

0 0 0 0

0 1 0 1

0 0 0 0

D , BA→AA,
AB

BBJ →BA,

b195S 1 1 1 0

0 0 0 1

0 0 0 1

0 0 0 21

D ,
AB

BAJ →AA, BB→H AB

BA,
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b205S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D , BA→AA, BB→AB,

AA→BA, AB→BB,

b215S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D , AB→AA, AA→AB,

BB→BA, BA→BB,

b225S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D ,

BB→AA, BA→AB, AB→BA, AA→BB,

b235S 0 0 1 0

1 21 1 0

0 1 21 1

0 1 0 0

D , BA→AA, AB→BB,

BA

AAJ →AB,
BB

ABJ →BA,

b245S 21 1 0 1

0 0 0 1

1 0 0 0

1 0 1 21

D ,
BB

ABJ →AA, H AA

BA
→BB,

BB→AB, AA→BA,

b255S 21 0 1 1

0 21 1 1

1 1 21 0

1 1 0 21

D ,
BB

BAJ →AA,

BB

BAJ →AB,

AA

ABJ →BA,
AA

ABJ →BB,
e,

s

b265S 21 1 0 1

1 21 1 0

0 1 21 1

1 0 1 21

D ,
BB

ABJ →AA,

BB

ABJ →BA,
AA

BAJ →AB,
AA

BAJ →BB,

b275S 21 1 1 0

1 21 0 1

1 0 21 1

0 1 1 21

D ,
BA

ABJ →AA,

AA

BBJ →BA,
BB

AAJ →AB,
AB

BAJ →BB,

b285S 22 1 1 1

1 22 1 1

1 1 22 1

1 1 1 22

D ,

AB

BB

BA
J →AA,

BB

AA

AB
J →BA,

AA

BB

BA
J →AB,

BA

AA

AB
J →BB.

It should be mentioned that in the above, the reaction p
cesses of eachb have been given only and the diffusio
processes~which exist in all cases! have been suppresse
Also note thatb1 is the pure diffusion process of@14#, andb5

is merely Eq.~16!.
In all the above cases, the probabilitiesC and As are

given by Eqs.~11!, ~17!, and ~22!, respectively. Obviously,
S(z,w) must be calculated from Eq.~24! for each case, and
then the calculations of Sec. III can be repeated for them
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